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Electromagnetic Scattering from an
Infinite Circular Metallic Cylinder
Coated by an Elliptic Dielectric One

John A. Roumeliotis, Harilaos K. Manthopoulos, and Vassilios K. Manthopoulos

Abstract—In this paper the scattering from an infinite circular,
perfectly conducting cylinder, coated by an elliptic dielectric one,
is considered. The electromagnetic field is expressed in terms of
both circular and elliptical cylindrical wave functions, which are
connected with one another by well-known expansion formulas.
In the special case of small » = ka/2 (a is the interfocal distance
of the elliptic dielectric and % its wavenumber), exact, closed-
form expressions of the form S(h) = S(0)[1 + gh® 4 O(h*)]
are obtained for the scattered field and the various scattering
cross sections of the problem. Both polarizations are considered
for normal incidence. Graphical results for various values of the
parameters are given.

1. INTRODUCTION

HE SCATTERING of an electromagnetic plane wave

by an infinite circular perfectly conducting cyclinder
coated by an elliptic dielectric one, is considered in the
present paper. The reasons for considering analytical and
closed-form solutions to problems of this kind are referred
in [1]-{4]. Such solutions have practical importance, parallely
to their mathematical interest. Our results are useful for the
detection of metallic bodies embedded in dielectrics. The
analogous problem, with the circular and elliptic boundaries
interchanged, was solved elsewhere [5]. The elliptical-circular
combination of this work may enhance or decrease the various
scattering cross sections, in comparison with the corresponding
ones of the problem of two coaxial circular cylinders, a result
which also appeared in [S] and in problems of scattering from
eccentrically coated infinite metallic cylinders and spheres [3],
[4].

The solution of the problem under consideration is not made
in steps totally analogous to those of the corresponding one
in [5], but it presents much more complexities and lengthy
manipulations, because the external boundary of the dielectric
coating is elliptic now (circular in [5]). This fact raises enough
more difficulties in the satisfaction of the boundary conditions
and the evaluation of the sets of lincar nonhomogeneous
equations for the expansion coefficients of the field, as well
as in the manipulation of these coefficients, as will become
evident in what follows.
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Fig. 1.

Geometry of the scatterer.

II. SOLUTION OF THE PROBLEM
FOR THE E-WAVE POLARIZATION

The geometry of the problem is shown in Fig. 1. The two
cylinders have the same z axis. We designate by u = pq
the elliptical boundary and take notice of the following basic
relations:

Ry :gcosh,uo, T = %sinhuo,
h=ka/2, hcoshpuy=kRs,
ha =kya/2, hocoshpy = koRo,
a® = 4(R% —r2), po =tanh™' (ry/Ry).

The dielectric constant and the wavenumber are €1, k1 (= k)
in region I and ex(= ¢o), ka(= ko) in region I (free space).
The magnetic permeability of both regions is that of free space.

We consider first the E-wave polarization. The incident
plane wave impinging normally on the z axis has the form
(61, [71):

ine = —m | [ Sem(ha,cos go)
SRNCOWRRIES = oa
- Sem(ha, cos F)Je, (b, cosh p)
S04 (hz,cos o)
[ Mz, (h2) ]

- Som(ha, cos #)Jo,, (hs, cosh ,u,)} (2)

In (2) p and ¥ are the transverse elliptical cylindrical coordi-
nates, Je, (Jom,) are the even (odd) radial Mathieu functions
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of the first kind and Se,,(So,,) are the even (odd) angular
Mathieu functions. The normalization constants Mﬁf"), are
given in [6]. The angle ¢ defines the direction of incidence
of the plane wave with respect to the positive x axis. The
assumed time dependence is exp (jwt).

The field in region I, expressed in terms of circular cylin-
drical wave functions has the form

EL = "[Ji(ksr) + ¢iNi(ka7)][4; cosie + Cisinig]  (3)
i=0
where r, ¢ are the polar coordinates, J; and N, are the usual

cylindrical Bessel functions of the first and second kind,
respectively, and

¢ = —Ji(k1R1)/Ni(k1Ry1), t=0,1,2,--- (4

Expression (3) satisfies the boundary condition Eg = 0 for
r = R;. In order to satisfy the boundary conditions at u = po,
the circular cylindrical wave functions are expanded into
concentric elliptical ones by means of well-known formulas

[6]:

V8T <~ Bf(h,m)
€& = an(h)
- Sem(h,cos 3)Zen,(h,cosh p),
i=0,1,2--- (5)

Z,(kr) cosip =

V8T < B?(h,m)
2 Mg (h)
- Som(h,cos ¥)Zom(h,cosh p),
i=1,2---

Z;(kr) sinip =

(6)

where ¢ and m are both even or both odd; Z; = aJ; + bN;
and Ze,, = aJeny + bNew(Zoy = aJom + bNoy,) are the
general Bessel functions and the even (odd) general radial
Mathieu functions, respectively; BE'” (h,m) are the well-
known expansion coefficients for the Mathieu functions (see
the Appendix); and, finally ¢, = 1 for ¢ = 0 and ¢, = 2
for ¢ = 1 is the Neumann factor. Substituting from (5), (6)
into (3), we find easily the expression for E! in elliptical
cylindrical wave functions.

The scattered field, expanded in terms of elliptical cylindri-
cal wave functions, can be written as

ES = P, Seom (ha, cos 9 He® ho,cosh 1)
z 2m

m=0

+ Pop18eamy1(ha, cos)

. Hegi)1+l(h2, cosh p1) + Q2m S02m/ (b2, cos F)

- Ho$2 (ha, cosh 1) + Qam11503m+1(ha, cos 9)

Hof) ,1(ha, cosh )] (7)
where He? = Jem, —jNem(Hog) = Jopy — jNop).

The total field in region IT is EIl = Einc+ E?. Tts expression
is found using (2) (arranging separately the terms with even

and odd m) and (7). So, we can satisfy the boundary condition
El = EI at y = po. Multiplying next both members
of the resulting equation by Segm(he,cos ) and using the
orthogonal properties of angular Mathieu functions from [7],
we finally find

= [ VER , Bgi(h,2m)
g{ e Mg, ) oo cooh to)

+ q2zN82m(h, cosh NO)]}

. [Z 2 B (b, 2m) B, (i, 2m)}
n=0 "

= V87 7™ Segm(ha, cos @)
. Jegm(hg,COSh NO) + P2mM5m(h2)
) Heg,{(hz,cosh o) (8)

Repeating the same process multiplying by Sezm+1, S02m,
So2m+1, respectively, we find other three equations analogous
to (8). In the first of them 2¢,2m,2n are substituted by
2i+1,2m+1,2n+1, respectively. In the second, e, As;, Pap,
are substituted by o, Ca,, Q2m, respectively. Finally, the third
is similar to the second, with 2z + 1,2m + 1,2n + 1 in place
of 2i,2m, 2n, respectively. All three last equations contain 2
in place of €, and ¢, of (8).

The last boundary condition Hi = HJ at p = po is
equivalent to OEL /Oy = OEY /Oy at p = o in this problem,
where regions I and II have the same permeability. Satisfying
this boundary condition and following steps analogous to
those of the previous case, we conclude to four equations
similar to (8) and the other three described after it, with the
only difference that the various radial Mathieu functions are
replaced by their derivatives with respect to p, at g = pig.

From these last four equations we can express the scattered
field coefficients P,, and @, in terms of A’s and C’s,
respectively. So,

Bg(h,m)
"M, (h) Mg, (ho)

%[Jcm(h, cosh p) + giNem(h,cosh p)]
%Heg)(hz, cosh p)

- 2
> Bi(h,m)B (haym) = | — VBrj ™™

w=po

n=0
d
) Sem(hz,cos po) d_ujem(hz,cosh )
Mg, (ha) d

—Heg)(hg, cosh p)
d“ H=Ho

(m Z 0) (9)
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Q=3 \/§7rc‘ Bg(h,m)

24\ "2 MR Mg (ha)

%[Jom(h, cosh ) + ¢iNom(h,cosh p))

iHoﬁ,zb) (he,cosh u)
dp p=ho

- |>" Ba(h,m)Bg ko, mr | — v/Br
n=0
~ Som(hae,cos po) du Om(ha, cosh p
Mg, (ho) diHO%)(hz,cosh I
i

w=po

(m 2 1) (10)

where m,¢,n are all three even or all three odd.
Substituting then the values of P, Q,, from (9), (10)

into (8) and the three analogous equations described after

(8), we find the following four infinite sets of linear

nonhomogeneous equations for the expansion coefficients
Asiy Agiy1, C2, Coigr:

(o)
E a2m,2042, = bam,
1=0
[oo]
E @2m41,2i+1A2i41 = bame1,
=0

v
£

(11)

(m

oo
Zgzm,zzozi = dom,

i=0

(m >

<
N

v
=

(o]
Zgzm+1,2z+102i+1 = domy1, (m (12)
1=0
where
_ 1 Bg(h,m) | &

2w
mi — —B¢ h, °(h s
a e; Mg (h) c v (h,m) B, (hg,m)

n=0 "
[Jem (h, cosh po) + ¢; Ney, (h, cosh pg)]

- Hess)(hz, cosh z1p)

%[Jem(h, cosh p) + ¢, Ne,, (h,cosh p)]

d
aHeg)(hz,cosh )

by = 77" 8em (h2,c08 o) | Jem (ha,cosh o)

%Jem(hz, cosh p)
d
@Hes;f)(hg,cosh 1)

—He® (hy, cosh uo)

“=po

(14)

1 B°(h,m) |
D= S E M B (h

[Jom(hv cosh NO) + qiNOm (h, cosh /1'0)]

— Ho{? (hy, cosh o)
di[Jom(h, cosh p) + ¢, Noy, (h,cosh )]
L ap

d
@Hog)(hm cosh p)

H=H0

(15)

A = 57" 80m (h2,cosy) [ Jom(he, cosh ug)

diJom(hg, cosh )
—Ho® (hs, cosh o) d,u

—Hog)(hz,cosh i)
dy

H=Ho
(16)

and m,,n are all three even or all three odd.

For general values of h(hy = Th,7 = ko/k1 = \/ea/e1),
the infinite sets given by (11), (12) can be solved by numerical
methods only. The complications of such an approach are
discussed in [1], [2]. For small values of ~ an analytical
solution is, however, possible. After long, very laborious
calculations one can find expansions of the following form:

amm(h) = A + Ammh? + O(R*),
Imm (h) =Gy +Grmmh®+0(h*) (17)
ami(h) = Al B ™1+ O(R?)],
gmi(h) = G ™1+ O(R2)],

(i #m) (18)
bm(h) = Bm + Bmh® + O(h*),
dm(h) = Dy, + DpB? + O(R*).  (19)

But here m and ¢ are both even or both odd, so a,,, and
9mi(t # m) are the order of h2? or higher.

The analytical expressions of the expansion coefficients
A,B,G and D calculated from (13)~(16) are given in the
Appendix. A simple comparison of the expressions (13)—(16)
with the corresponding ones of [5] shows the much more
complexity of the present expressions and calculations.

The systems (11) and (12) have exactly the same forms with
those of [5]. So the solution for A; taken from [5] is

A= L <_6ibi-—2_am;2 +bi — bi+2M)a
Oai Ai—2,-2 Ai42,i42

1=0,1,2,--- (20)

where C; is found from (20) if a,b,6; are substituted by

g,d,6,_1(1 2 1, respectively. In (20) 6o = 6 =0 and §; = 1
for i 2 2, since m and ¢ are never negative in (11), (12).



ROUMELIOTIS et al.: ELECTROMAGNETIC SCATTERING FROM AN INFINITE CIRCULAR CYLINDER 865

III. THE SCATTERED FIELD

The scattered field is given in (7). Using formula (6) from
[5] and the similar for odd functions, we can express this
field into circular cylindrical wave functions. Using then the
asymptotic expansion for Hankel functions [5] we take the
scattered far-field expression

e Fkar

E; = 7 f(»)

in terms of the scattering amplitude

1+
flp) = *\/‘ﬁG(w)

1)

(22)
and

G(e) = Y > ' [PnBf(h2,m) cosle
m=0 =0

+ Q. BY (ha, m) sinlyp].

In (23) m and [ are both even or both odd.
The differential, backscattering (radar), forward and total
scattering cross sections are, respectively:

(23)

a(e) = (o) 4
oy = 2ma (o + ) = 2x| f(po + T)[* or
kaop = 2| G (o + ) ? 25)
oy =20 (o) = 2| f(o)|* or
kao s = 27|G(0)[? (26)
2 27
Q= / o) dip = /0 f@Pde. @)

Substituting from (22) and (23) in (27) and using the orthogo-
nality relations between trigonometric functions and formulas
(A29) from the Appendix, we finally find after very lengthy
calculations the result:

k2Q: = 27| Py |*[BE(ha, 0))?

S (1P PLBE, (g, m)?

1@ 1B (R, m)?).

In (28) we have kept terms up to the order h2, only. The
coefficients P, and @, are given in (9) and (10), respectively.

Using (17)—(19) in (20) and the analogous for C; one finds
that

(28)

A;(R) = A2 + AP B2 4 O(RY),
Ci(h) = C° + CPR2 + O(hY).

The various expansion coefficients in (29) are given in the
Appendix.

Substituting from (29) into (9) and (10) and using formulas
for Mathieu functions from [5], [6], as well as (A25)-(A30),
from the Appendix, we obtain after lengthy manipulation
analogous expansions for P,, and Q,, and finally for o(¢)
and ();. The last two can be set in the form

S(h) = S(0) + SK* + O(h*)
= S(0)[1 + gh® + O(h%)],

29)

g= g(—(‘)j (30)

where both g are independent of /i, while that for (); is also
independent of . The expansions for o3, and o5 are calculated
from (30) for special values of ¢. The expansion coefficients
S(0) are the well-known results for the problem of two coaxial
circular cylinders, while g were found after very laborious and
lengthy calculations and it is impossible to give their analytical
expressions, without making the paper very long.

Our results were checked by the use of the forward scatter-
ing theorem [8], which in this case has the form:

Q: = —2(n/k2)'* Re[(1 - §) f(0)]

= —[2(2m)Y/% / k2] Re [G(0)]- (31

The very lengthy expressions of the various coefficients do
not permit the analytical proof of (31), but its validity was
established numerically for many values of the parameters.

IV. THE H-WAVE POLARIZATION

In this section the case of the H-wave polarization is
examined. The incident wave H"® impinging normally on the
z axis is expressed by formula (2). The expansion for H! in
region I is given by (3) in circular cylindrical wave functions
and with the use of (5), (6) into (3), in elliptical cylindrical
wave functions, with the only difference that ¢; in this case
has the expression

q; = —le(klRl)/N;(k‘lRl), 1= 0,1,2,'-- (32)

in order to satisfy the boundary condition OH./0r = 0
(corresponding to E], = 0) at r = R;. In (32) the primes
denote derivatives of Bessel functions with respect to the
argument. The scattered field H: is given by (7). The total
field in region Il is HI = Hinc 4 H?. Satisfying the boundary
conditions at p = pq:
HI — HII

z z

(€2/€1)0HL Jou = 8H Jop  (33)

(the second corresponding to EJ = Ey) and following steps
identical to those for the case of the E wave we find equations
similar to (8)-(31). The only differences here are that the first
infinite sums (Ef_‘;_o(l)) in (9) and (10) are multiplied by €2 /¢,
while their last terms remain unchanged and that the last terms
in the right parentheses of (13) and (15). i.e., those multiplied
by H el and H og), respectively, are also multiplied by €3/€;.
The formulas (14) and (16) remain the same, also in this case.
It should be noticed that the expression for ¢; used in the
various equations of the present case, is given in (32).

V. NUMERICAL RESULTS AND DISCUSSION

In Figs. 2-9 the various scattering cross sections are given
for the configuration of Fig. 1, for the cases h = 0 (problem of
two coaxial circular cylinders) and k = 0.05, 0.1, for various
values of the parameters. The expansion coefficients ¢ are
determined from expressions (30). The physical restriction
a/2 = (R} — r3)Y/? < Ry[l — (R1/R2)**/? imposes an
upper limit on the values of h = ka/2, so that the restriction
h < 1 is not so severe as may appear at first.

The terms omitted in all of our results are of order A* and
greater and so A can take relatively large values in our solution.
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K20b
I h=0.14
9.435¢
9.465} h=0
[ E wave
9.455} £1/6255.5
R1,/R2-05
q.445}+ R2/A2:=0%
] fig $o(deg)
Fig. 2. Backscattering cross section for €1/e2 = 5.5, Ra/Aa = 0.7

(E wave).

In Figs. 2-5 the backscattering (radar) cross section oy
is given for various values of the parameters and for both
polarizations. The same is done in Figs. 6 and 7 for the forward
scattering cross section oy and in Figs. 8 and 9 for the total
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scattering cross section Q. In all these figures Ay = 27/i 2 is
the wavelength in region II (free space). For certain valus s of
the parameters it is obvious that by making the outer diele tric
cylinder elliptic, one can produce a larger or smaller o, 0 - or
Q:, in comparison with that of the problem of two co: xial
circular cylinders. Analogous results have also been four 1 in
[3]1-[5]. This may be useful for certain applications.

All of our results are symmetrical about the z and y ¢ <es,
as is imposed by the geometry of the scatterer.

APPENDIX

The various expansion coefficients appearing in (17)- 19)
are given below: In the above relations we have made the
substitutions:  In all the above formulas H; = Hi(z)(as ) is
the Hankel function of the second kind and H its deriv: tive
with respect to the argument.

Using next (A1)—(A6) in (20) we find the expressions for

1 T Komm
= —y/ = - >
Amm em 2 (Imm TH,;n ), (m ot} 0) ‘Al)
Amm _ i _71'_{_5"1 Im—Z,m . (7‘2 + 1)Imm Im+2 m !:(5 £ 27‘2 + 1 Kmmm
6m 2 Tm Sm t
X+ H’ H/ /
__)HI +Kmmm7- ( 6 m=2 S ):l/( le } (m Z 0) (AZ)
1 T K 2178,y -2
mym—2 p— \/;dm <Im,m—2 — ";I"};” ) / Tm  (m 2 0) (A3)
1 /r K
Am,m+2 = ‘5 \/;(Im,m—!—Q - %Z:.Fz)a/tm (m ; 0)‘ (A4)
T F,
—_ =M . — mmm >
B, 2 (me H ), (m 2z 0) (A5)
- + - ‘ +
B, :j—m\/ETZ{(smL_m _ 2Lmm _ Ly, K@n@& _ 3Fmmm F—"‘)Hﬁn
2 Tm Sm tm Tm Sm tm
Tln Hl Hl
+ Frumm (6m 2+ M)] / an} (m Z 0) (A6)
sm tm
— 2
Gmm = #\/jtanh Ho —6m_1m 2 Im—2,m + (T + 1)Imm + m+ 2 Im+2am
2m 2 m Tm Sm m tm
H A, + K E
m m mmm m >
+ T(xsH,,)? ] (m 2 1) (A8)
1 Vg Ko m,m—2
G'lm m—2 — % \/;tanh Noém—l (Im,m—2 - _;%7/:1_> ) /'rm (m Z 1) (Ag)
1 = Komm
G m+2 = 2— \/;tanh Mo <Im m42 = mT—’Z.T,n—i——z) ) /tm (m 2 1) (A10)
S,
= \/7tanh /1«0< mm — }n{r/nm), (m > 1) (All)
Dp=2—,/Ztanh o [5 -2 (n=2)/m) P2 | 2P
m 2 Tm Sm
q’m—f-? m ((m + 2)/m)‘I>m m+2 H! Um - SmmmEm 2
— 2 k) . k123 >
b wHy: | M2 (A12)
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K2.0p

S

18993 h=0

1891

18.969

Ewave

18.967
L €1/€2=55
R1/R2=0.5
18965\
I R2/A2=0.9
18.963 h=0.1
o9t o > te(deg)

Fig. 3. Backscattering cross section for €1/ea = 5.5.Ra/Aa = 09
(E wave).

the coefficients A? and A§2), appearing in (29):

F20b4g h=0.1

20.8801

20670 h=0

20,8601
Hwave

20,850 €1/€2=2.54
Ri/R2z0.5
R2/A2=0.5

20.9401-

( 1 L A L L i 1

TG e o foldeq)

Fig. 4. Backscattering cross section for €1/ea = 2.54,Ro/A2 = 0.5
(H wave).

[6] for small values of h. The calculations, straightforward but
very laborious, were made up to order A2, for many values of
m(i = m,m % 2) and we have found the following general

A? = B; /A, Az@) formulas, valid for each value of m, with only two exceptions
_ AuBi - Bidii 5. Bi 2 AL, ~ Bisa Al ‘ referred below:
A% YAisoi—oA AwAitoite
20 A24 h?
(20 (A24) By io(h,m) = Tz * O(h%),
The coefficients C7 and C’i(z) are given by (A24) if we use " 0 .
G,D (from (AT)~(A12), 6;_1(i > 1) in place of 4, B, 4, m 2 O (uppersien) (A25)
. = = 2 {lowersign)
respectively. ,
. . . h
In order to calculate all the I')recedlr;%ogbxpaflswn coefﬁc1er.1ts, BE (hym) =1— - +0( h4), (m # 1)
we have expanded the coefficients By, (h,¢) for the Mathieu 8(m? — 1)
functions, into powers of A, following procedures outlined in (A26)
Iy = Ji(%3) — (Jn(®1)/Na(21)) Ni(23),
in = J1(%3) = (Jn(21)/Nn(21)) V] (23), (A13)
1 =FkRy, z2=kRs, z3=kRy (Al4)
Ky = Hi—[l/ny X;E = Kmm+2,m + Tsz:I:2,m,m (A15)
Tm = 16(m — 1), tm = 8ep(m + 1) (A16)
_ 9 _ [ -32 (forA,B)
Sm = 8(m* — 1), (m+1), s1= {32/3 (for G, D) (A17)
Lin, = Ji(m2) cos (ngpo), Fun = H;J{(x2) cos (nypo) (A18)
L;tn = Lm7m:|:2 - Lm:I:Z,ma Fn:E = LI'mmm+t2 — Fm,m:l:2,m - Fm:l:27m,m (Alg)
m—2Kpm—2m +T2Km—2mm (27_2 + 1)Ifrrtrrz7rl
Am — 6771,—]_ 3 ) Ad] —
m T'm Sm
2
_ m+ 2 Km,m+2,m +7 Km+2,m,'m x% _ H,I.m + Konm (AZO)
™m tm / T3
_ {4 7 7
E, = <—5m_1m 2 Hny + Ay, + Tfr—zﬁ"—ﬂ)xg + Hu _ H' (A21)
Tm Sm m tm 9o
Oy, = sin (lpg) Jn(w2),  Sun = sin (ipo) HyJ) (z2) (A22)
{5m~—1[sm—2,m7m - ((m - 2)/m)(sm,m—2,m + Sm,m,m——Q)] 3Smmm
Up = +
Tm Sm
B Sm+2,m,m — ((m + 2)/7’2)(Sm,m,m+2 + Sm,m-l-?,m) }l‘% + qu)mm _ Smmm- (A23)
m T2
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i h=0.1

h=0

Hwave
£1/€2=2.54
R1/R2=0.5
R2/X2=07

I A Il 1 L 1 3

6 30 e 90 %0

150180~ Po(deg)

Fig. 5. Backscattering cross section for €1/ea = 2.54,Ra /X2 = 0.7
(H wave).
K20y
20400 h=04
2?:380'
29.360f
29.340F
29320 E wave
h=0 £1/6,25.5
R1/R2=05
29300F 2
Re/A2:0.7
29.200}
1 1 1 1 1 1 ] i 1 1 1 ] i
0 0 90 120 150 50 > fo(deq)
Fig. 6. Forward scattering cross section for €;/e2 = 5.5, Ra/Xa = 0.7
(E wave).
k20¢
126.62
126.580
126540
H wave
126.500 €1/€2:2.54
R1/R2:0.5
R2/3,:05
126.460 pert
30 10 50 Teoteldey)

Fig. 7. Forward scattering cross section for €1 /ea = 2.54, Ra /A2 = 0.5
(H wave).

h2

£1)

4
16m(m + O,

Bria(h,m) = F
(upper sign)

<m = ; (lower sign) ) (A27)

KQu
S42r h=a1
4081
9404
9400+
939 |
£ wave
9392 £4/€2=55
R1/R220.5
Ra/2220.7

9388 1

L
0TI e TR i e feldey)

Fig. 8. Total scattering cross section for €1 /ea = 5.5, Ra/Ao = 0.7
(E wave).
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Fig. 9. Total scattering cross section for €1/ep = 2.54,Ro/X2 = 0.5

(H wave).
B, (h m)——+——h2— o(h*), (m = 2)
m ’ - 8m(m2 . 1) + ’ m =

(A28)
From (A25) and (A27) there results that up to order h2:

emB,_s(h,m) = —€m_32Bg, (h,m — 2),

(m 2 2)
By, _s(h,m)/(m = 2) = By, (h,m — 2)/m,
(m>2) (A29)
The two coefficients not given by (A25)—(A28) are
h? 4
Bi(h,1) = 1+—+O(h ),
3h 4
B (h,1) =14 —— + O(h*). (A30)
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