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Electromagnetic Scattering from an

Infinite Circular Metallic Cylinder

Coated by an Elliptic Dielectric One
John A. Roumeliotis, Harilaos K. Manthopoulos, and Vassilios K. Manthopoulos

Abstract—In this paper the scattering from an infinite circular,

perfectly conducting cylinder, coated by an elliptic dielectric one,
is considered. The electromagnetic field is expressed in terms of
both circular and elliptical cylindrical wave functions, which are
connected with one another by well-known expansion formulas.
In the special case of small h = ka/2 (a is the interfocal distance
of the elliptic dielectric and k its wavenumber), exact, closed-
form expressions of the form S(h) = S(0)[1 + gh2 + 0(h4)]
are obtained for the scattered field and the various scattering
cross sections of the problem. Both polarizations are considered

for normal incidence. Graphical results for various values of the

parameters are given.

I. INTRODUCTION

T HE SCATTERING of an electromagnetic plane wave

by an infinite circular perfectly conducting cyclinder

coated by an elliptic dielectric one, is considered in the

present paper. The reasons for considering analytical and

closed-fo~ solutions to problems of this kind are referred

in [ 1]–[4]. Such solutions have practical importance, parallely

to their mathematical interest. Our results are useful for the

detection of metallic bodies embedded in dielectrics. The

analogous problem, with the circular and elliptic boundaries

interchanged, was solved elsewhere [5]. The elliptical-circular

combination of this work may enhance or decrease the various

scattering cross sections, in comparison with the corresponding

ones of the problem of two coaxial circular cylinders, a result

which also appeared in [5] and in problems of scattering from

eccentrically coated infinite metallic cylinders and spheres [3],

[4].

The solution of the problem under consideration is not made

in steps totally analogous to those of the corresponding one

in [5], but it presents much more complexities and lengthy

manipulations, because the external boundary of the dielectric
coating is elliptic now (circular in [5]). This fact raises enough

more difficulties in the satisfaction of the boundary conditions

and the evaluation of the sets of linear nonhomogeneous

equations for tbe expansion coefficients of the field, as well

as in the manipulation of these coefficients, as will become

evident in what follows.
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Fig. 1. Geometry of the scatterer.

II. SOLUTION OF THE PROBLEM

FOR THE E-WAVE POLARIZATION

The geometry of the problem is shown in Fig. 1. The two

cylinders have the same z axis. We designate by p = MO

the elliptical boundary and take notice of the following basic

relations:

R2 = ~coshpo, 7-2 = ~sinhpo,

h = ka/2, h cosh ,uO = kR2,

hz = k2a/2, hz cosh uo = kzRz,

a2 = 4(R; – r;), PO = tanh-l (rz/R2).

The dielectic constant and the wavenumber are el, kl (= k)

in region I and C2(= Co), k2 (= ko) in region II (free space).

The magnetic permeability of both regions is that of free space.

We consider first the E-wave polarization. The incident

plane wave impinging normally on the z axis has the form
[6], [7]:

EN =/G-&{[se~I;~yo)]
Tn=o

. Sem(h2, cos 0) Jem(h2, cosh ~)

[

+ Som(h2, cos PO)

M&(hz) 1
. L90m(hz, COS ti)Jom(h2, cosh N)

}
(2)

In (2) ,u and ti are the gansverse elliptical cylindrical coordi-

nates, Jem (Jom ) are the even (odd) radial Mathieu functions
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of the first kind and Sem (Som) are the even (odd) angular

Mathieu functions. The normalization constants lkf~(”), are

given in [6]. The angle q. defines the direction of incidence

of the plane wave with respect to the positive $ axis. The

assumed time dependence is exp (jut).

The field in region I, expressed in terms of circular cylin-

drical wave functions has the form

@= ~[J,(klr) + qiNi(klr)][Aicosiw +Cisinip] (3)

i=o

where r, q are the polar coordinates, J~ and IV, are the usual

cylindrical Bessel functions of the first and second kind,

respectively, and

qi = –Ji(klRl)/Ivi(fh121), i=o, 1,2, . . . (4)

Expression (3) satisfies the boundary condition E: = O for

r = RI. h order to satisfy the boundary conditions at p = PO,

the circular cylindrical wave functions are expanded into

concentric elliptical ones by means of well-known formulas

[6]:

. Sem(h, cos t9)Zem(h, cosh p),

i=(),l,z... (5)

(6)

where i and m are both even or both od~ Zi = aJi + bNi

and Zen = aJe~ + bNe~ (Zo~ = aJo~ + bNo~) are the

general Bessel functions and the even (odd) general radial

Mathieu functions, respectively; B;(”) (h, m) are the well-

known expansion coefficients for the Mathieu functions (see

the Appendix); and, finally ei = 1 for i = O and ~i = 2

for i > 1 is the Neumann factor. Substituting from (5), (6)

into (3), we find easily the expression for E; in elliptical

cylindrical wave functions.

The scattered field, expanded in terms of elliptical cylindri-

cal wave functions, can be written as

E:= ~ [P2~Se2~(h2,cos O) He!#(h2,cosh p)

m=o

+ P2m+1 Se2m+l (h2, co. )

‘ Hef4+1(h2, Cosh p)+ Q2~S02~(h2, cos 0)

. llo:~(hz, cosh /u) + Q2m+1s02m+1(h2, co. ~)

~Of~+l (h2, cosh ,u)] (7)

‘2)– Jo~ – jNo~).where Het) = Je~ — jNem (Ho~ —

The total field in region II is E~l = E~+Ej. Its expression

is found using (2) (arranging separately the terms with even

and odd m) and (7). So, we can satisfy the boundary condition

El = Ejl at p = PO. Multiplying next both members

of the resulting equation by Sez~ (hz, cos JO) and using the

orthogonal properties of angular Mathieu functions from [7],

we finally find

+ wdJe2~(k Cosh MO)]
}

“[m 2T

E
~B~n(h, 2m)B~n(h2, 2m)

‘n=o 1
= &j-2rnSez~(hz, cos VJO)

. Jezn(hz, cosh vo) + F’2~Jfjm(h2)

. Hef~(h2, cosh po) (8)

Repeating the same process multiplying by sez~+l, Sozm,

So2~+1, respectively, we find other three equations analogous

to (8). In the first of them 2i, 2m, 2n are substituted by

22+ 1, 2m + 1, 2n + 1, respectively. In the second, e, AZ, Pz~

are substituted by o, CU, Qz~, respectively. Finallly, the third

is similar to the second, with 2i + 1, 2m + 1, 2n + 1 in place

of 2i, 2m, 2n, respectively. All three last equations contain 2

in place of c, and en of (8).

The last boundary condition Hi = Hjl at p = PO is

equivalent to 8Ej /6’p = t3Ej1/t3u at ,LL= PO in this problem,

where regions I and II have the same permeability. Satisfying

this boundary condition and following steps analogous to

those of the previous case, we conclude to four equations

similar to (8) and the other three described after it, with the

only difference that the various radial Mathieu functions are

replaced by their derivatives with respect to ~, at ,u = KO.

From these last four equations we can express the scattered

field coefficients Pm and Qn in terms of A’s and C’s,

respectively. So,

$[Je~(h, cosh K) + ~iNe~(h, cosh ~)]

~He$) (hz, cosh p)
dp

P=PO }

~Je~(h2, cosh V)
Se~(h2) cos PO) dp

iW&(h2)
~He&) (h2, cosh ~)
dji

P=PO

(m, ~ ()) (9)
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{

‘/% Bf(h, m)
Qrn = ~ y CiM&(h)iw&(h,)

;=O

#-[Jom(h, cd .u)+ qiNorn(h, cosh v)]

&Of) (hz, cosh ~)
dp

[ 1-~B~(h, m) Bj(h2, m)n - &j-m

?3=0

-bOm(hy, cosh ~)
SOm(h2, COS ~0) @

M&(hz)
4~0:) (h2, cosh ~)
dp

!J=PO

(m ~ 1) (lo)

where m, i, n are all three even or all three odd.

Substituting then the values of Pm, Qm from (9), (10)

into (8) and the three analogous equations described after

(8), we find the following four infinite sets of linear

nonhomogeneous equations for the expansion coefficients

A2i, A2,+1, C2,, C2i+1:

‘i=o

co

E a2m+l,2i+lA2i+l = bm+l,
(m > (J) (11)

‘i=o

m

x gzm,ztc,i =dzm ) (m> O),

i=(l

F g2m+l,2t+lc2i+l = d2m+l>
(n > 0) (12)

‘t=o

where

{

~ [Je~(h, cosh &o) + qilve~(h, cosh~o)]

—He~) (hz, cosh ~o)

[

b~ = j-~Se~(h2, cos PO) Je~(h2, cosh Uo)

$Je~(h2, cosh ~)

–He$) (h,, cosh Mo) d

—He$$) (h2, cosh p)
dp

(13)

P=PO 1

(14)

{

. [Jowz(h, coshpo) + qJVo~(h, cosh~o)]

– ~Ofj (h2, cosh ~())

&o~(h, cosh p) + qzNo~(h, cosh /u)]

‘~0~) (h2, cosh ,u)
dp

[

d~ = j-m5’0m(h2, COS ~o) .Jo~(h2, cosh ,L@)

; Jo~(h2, cosh U)

–Ho~)(h2, cosh flO) d

—~0~) (hz, cosh U)
J,<

W=!JO }

(15)

1
UP lp=#o J

(16)

and m, i, n are all three even or all three odd.

For general values of h(h2 = rh, T = kz/kl = =),

the infinite sets given by (11), (12) can be solved by numerical

methods only. The complications of such an approach are

discussed in [1], [2]. For small values of h an analytical

solution is, however, possible. After long, very laborious

calculations one can find expansions of the following form:

a~m(h) = A~~ + A~~h2 + 0(h4),

grnrn(h)=Grnrn+G ~mh2+O(h4) (17)

a~i(h) = A&ihl’-~l[l + O(h2)],

g~i(h) = G~ihli-ml[l + O(h2)],

(i # m) (18)

bn(h) = Bm + Bmh2 + 0(h4),

din(h) = D~ + Dmh2 + 0(h4). (19)

But here m and i are both even or both odd, so a~t and

gmi (~ # n) are the order of h2 or higher.
The analytical expressions of the expansion coefficients

A, B, G and D calculated from (13)–(16) are given in the

Appendix. A simple comparison of the expressions (13)–(16)

with the corresponding ones of [5] shows the much more

complexity of the present expressions and calculations.

The systems (11) and (12) have exactly the same forms with

those of [5]. So the solution for Ai taken from [5] is

(
Ai = ~ –6ibi_z a“~~~~2 + bi – bif2

az,i+z

azi ai+2,i+2 )

2 = 0,1, 2,...’ (20)

where Ci is found from (20) if a, b, 6i are substituted by

g, d, 6,-l(i > 1, respectively. In (20) 60 = 61 = O and 6i = 1

for i > 2, s~ce m and i are never negative in (1 1), (12).
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III. THE SCATTERED FIELD

The scattered field is given in (7). Using formula (6) from

[5] and the similar for odd functions, we can express this

field into circular cylindrical wave functions. Using then the

asymptotic expansion for Hankel functions [5] we take the

scattered far-field expression

-—ik, r

in terms of the scattering amplitude

(21)

(22)

and
cam

G(p) = ~ ~jJ[&~f’(hz, m) COSZP

rn=o 1=0

+ Q~Bf(h2, m) sinlp]. (23)

In (23) m and 1 are both even or both odd.

The differential, backscattering (radar), forward and total

scattering cross sections are, respectively:

CJ(p) = If(p)lz (24)

~b = 2~0(~(1 + ~) = 2~lf(@J + n)12 or

k20~ = 27rlG(po + n)12 (25)

of = 2mo(p0) = 27rl~(q0)12 or

kzof = 2nlG(po)\2 (26)

/
Q = ~’m o(p) dp = 02m lf(p)l’ dy. (27)

Substituting from (22) and (23) in (27) and using the orthogo-

nality relations between trigonometric functions and formulas

(A29) from the Appendix, we finally find after very lengthy

calculations the result:

r7c2Qt = 27rlPo12[B:(h2, 0)]2
cc

+7r ~{lPm17B;(h2, m)]2
‘m=l

+ lQ~12[%(h, m)12}. (28)

In (28) we have kept terms up to the order h’, only. The

coefficients Pm and Qm are given in (9) and (10), respectively.

Using (17)–(19) in (20) and the analogous for Ci one finds

that

Ai(h) = A: + Aj2)h2 + 0(h4),

Ci(h) = C:+ Cj2)h2 + 0(h4). (29)

The various expansion coefficients in (29) are given in the

Appendix.

Substituting from (29) into (9) and (10) and using formulas

for Mathieu functions from [5], [6], as well as (A25)-(A30),

from the Appendix, we obtain after lengthy manipulation

analogous expansions for Pm and Qm and finally for u(~)

and Qt. The last two can be set in the form

S(h) = S(0)+ Sh2 + 0(h4)

s
= S(0)[1 + gh2 + 0(h4)], —

g = s(o) ’30)

where both g are independent of h, while that for Qt is also

independent of p. The expansions for ~b and of are calculated

from (30) for special values of q. The expansion coefficients

S(0) are the well-known results for the problem of two coaxial

circular cylinders, while g were found after very laborious and

lengthy calculations and it is impossible to give their analytical

expressions, without making the paper very long.

Our results were checked by the use of the forward scatter-

ing theorem [8], which in this case has the form:

Q,= -2(m/kz)1i2 Re [(1 - j) f(YIo)l

= -[2(27r)’t2/k2] Re [G(~o)]. (31)

The very lengthy expressions of the various coefficients do

not permit the analytical proof of (31), but its validity was

established numerically for many values of the parameters.

IV. THE H-WAVE POLARIZATION

In this section the case of the H-wave polarization is

examined. The incident wave H~ impinging normally on the

z axis is expressed by formula (2). The expansion for H; in

region I is given by (3) in circular cylindrical wave functions

and with the use of (5), (6) into (3), in elliptical cylindrical

wave functions, with the only difference that qi in this case

has the expression

% = –J:(~l~l)/X(~l~l), i=ll, l,z, . . . (32)

in order to satisfy the boundary condition 8H: /tlr = O

(corresponding to E$ = O) at r = l?l. In (32) the primes

denote derivatives of Bessel functions with respect to the

argument. The scattered field H; is given by (7). The total

field in region II is Hjl = H$ + H:. Satisfying the boundary

conditions at K = PO:

@ =@, (e2/@H:/@ = d@/@ (33)

(the second corresponding to E; = Ejl) and following steps

identical to those for the case of the E wave we find equations

similar to (8)–(31 ). The only differences here are that the first

,=0(1)) in (9) and (10) are multiplied by cz/cI,infinite sums (X%’

while their last terms remain unchanged and that the last terms

in the right parentheses of (13) and (15). i.e., those multiplied

by He#) and Hog), respectively, are also multiplied by Ez/el.

The formulas (14) and (16) remain the same, also in this case.

It should be noticed that the expression for q; used in the

various equations of the present case, is given in (32).

V. NUMERICAL RESULTS AND DISCUSSION

In Figs. 2–9 the various scattering cross sections are given

for the configuration of Fig. 1, for the cases h = O (problem of

two coaxial circular cylinders) and h = 0.05,0.1, for vmious

values of the parameters. The expansion coefficients g are

determined from expressions (30). The physical restriction

a/2 = (11~ – r~)112 ~ &[l – (l?l/&)2]112 imposes an

upper limit on the values of h = ka/2, so that the restriction

h <<1 is not so severe as may appear at first.

The terms omitted in all of our results are of order h4 and

greater and so h can take relatively large values in our solution.
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9,*51

scattering cross section Qt. In all these figures AZ = 27r/1 z is

the wavelength in region II (free space). For certain valut s of

theparameters itisobvious that bymaking theouterdiele tric

cylinder elliptic, one can produce a larger or smaller o~,o c or

Q~, in comparison with that of the problem of two coixial

circular cylinders. Analogous results have also been four i in

E wave
[3]-[5]. This may be useful for certain applications.

All of our results are symmetrical about the z and y : ~es,
&lj&z::~,5
f?l,’R@.5

as is imposed by the geometry of the scatterer.

R21A2=0.?

APPENDIX
Fig. 2. Backscattering cross section for 61/ez = 5.5, R2 j~z = 0.7

(E wave). The various expansion coefficients appearing in (17)- 19)

are given below: In the above relations we have made the

In Figs. 2–5 the backscattering (radar) cross section ~b substitutions: In all the above formulas IIi = H{2) (x ) is

is given for various values of the parameters and for both the Hankel function of the second kind and If; its detivi tive

polarizations. The same is done in Figs. 6 and 7 for the forward with respect to the argument.

scattering cross section of and in Figs. 8 and 9 for the total Using next (A1)–(A6) in (20) we find the expression~ for

(m ~ ()) ( 42)

( 43)

(A4)

(A5)

(A6)

(A7)

1).

(A8)

(A9)

(A1O)

(All)

(A12)
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K@b

taw -
h=o

ta9+l

la969 -

la967 -

18.96S -

la963 - hao,q

)@bA h=o.1

20.800 -

2a8?0 - h:o

2Q060 -

H wave

-? ,
0 30 (a 90 120 150 {80 ●?dq) Fig. 4. Backscattenng cross section for 61/m = 2.54, Rz/Az = 0.5

(H wave).

Fig. 3. Backscattering cross section for eI /Q = 5.5. RZ/Az = 0.9
(E wave).

the coefficients A; and A~2), appearing in (29):

A; = .Z3i/A,i , A$2)

A,iBi – BiAii _ ~ 13-2z4;,i_2 fl+24,,+2
——

A:i ‘Ai_2>;_2A,i – At%Ai+2,i+2 “

(i ~ o) (A24)

The coefficients C’,” and Cf2) are given by (A24) if we use

G, D (from (A7)-(A12)), d~-1 (i ~ 1) in place of A, B, 8,,

respectively.

In order to calculate all the preceding expansion coefficients,

we have expanded the coefficients BSO) (h, i) for the Mathieu

functions, into powers of h, following procedures outlined in

[6] for small values of h. The calculations, straightforward but

very laborious, were made up to order h2, for mao y values of

m(i = m, m + 2) and we have found the following general

formulas, valid for each value of m, with only two exceptions

referred below:

h2
B~~z(h>’) = ‘8~m(m + 1) + 0(h4),

(

m ~ O (upper sign)

– 2 (lower sign) )
(A25)

l?~(h,m) = 1 –
h2

8(m2 – 1)
+ o(h4), (m # 1)

(A26)

Iln = Jt(z3) – (Jn(xl)/Nn(zl)) Nl(z3),

I;n = 4(X3) – (Jn(q)/Nn(oa))N; ($3),

XI = klRl, X2 = lc2R2, X3 = klRz

K,ln = HiI;n, X2= Krn>r7s~2,7n + T2Krn*2,7n,7n

r – 16(m– 1), t~ = 8e~(m+ 1)~—

{

–32 (for A, B)
s~ = 8(m2 – 1), (m+ 1), s, =

32/3 (for G, D)

Lln = JL (4 Cos (n$oo), F,ln = HiJ((T’) COS (~$%))

L: = Ln,m52 – JLn52,7n, F; = Frn,m,m~2 – Fm,rn~2,7n – Fm~2,nt,m

(

m – 2 Km,m.2,~ + T2K~–z,~,~
A. = (S._l —

(2T2 + l)K~~~
.

m ‘rm sm

m + 2 K~,~+z,~ + T2Km+2,m,m

)

HI
— x; — “’3m~ + K~~~

m tm

(

m – 2 H~_2 HA
Em = –&n.l ——

m + 2 h~+2

)

H~ H,
+—+————— ~;+—_

m r~ Sm m tm Z2 m

CIln = sin (lyJO)Jn(32), S,ln = sin (ipo)HIJ~(zz)

{

6m–1 [S~_Z,m,m – ((m – 2)/m) (Sm,m–2,m + J5’~,~,~-2)] + Ssmmm
u. =

r~ Sm

}

Sm+2,~,~ – ((m + 2)/m) (f&,n,~+2 + fk~+zm) ~; + ‘~@~TTZ _

tm X2

(A13)

(A14)

(A15)

(A16)

(A17)

(A18)

(A19)

(A20)

(A21)

(A22)

smmm . (A23)
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+! , ,
0 30 60 90 f20 j50 ;fy) p Wfdeq)

Fig. 5. Backscattering cross section for El fez = 2.54, Rz /~z = 0.7

(H wave).

#k@A
m-$-do -

ha!

2%380 -

29.360 -

29.3* “

29,320 -

29.220 -

E wave

6.f/&2= 5,5

Rj/R2= 0,5

R21AZ=0,?

i“’’’’’’’’”)30 60 90 120 150 felo @(de?)

Fig. 6. Forward scattering cross section for 61Jq = 5.5, Rz /A2 = 0.7
(E wave).

lyqA

12&580 -

{26.540 ‘

126.500 -

126.460 -

H wave

&/EQ=2.5+

kl/ R2,0, 5

R2A2 = 0.5

Fig. 7. Forward scattering cross section for eI /@ = 2.54, R2 /Az = 0.5

(H wave).

h2
Bfitz(h) m) = +16m(m * ~, + ~(h4),

(

~ ~ 1 (upper sign)

– 3 (lower sign) )
(A27)

:4:2
+

- h:Ql

W08 -

9.* -

9.400-

E wave

9.392- 6/22= 55
RI/RZ=O.S
kt/A1=ot7

%389-

b“’’io”30 60 120 150 fflo ● q~(de$)

Fig. 8. Total scattering cross section for eI /.sz = 5.5, Rz /Az = 0.7
(E wave).

22.382 -

22.3?8

22.3* -

H wave

22.370 ~ \/ E11E2= 2,54

Fig. 9. Total scattering cross section for cl/62 = 2.54, R2/A2 = 0.5
(H wave).

B~(h, m) = : +
h2

87rz(mz – 1) + 0(h4)’
(~ ~ 2)

(A28)

From (A25) and (A27) there results that up to order h2:

6m@;_2(h, m) = –em–21?; (lJ, ~ – 2),

(m ~ q

B;_2(h, rn)/(m – 2) = –Bfi(h, m – 2)/m,

(m> 2)

The two coefficients not given by (A25)–(A28) are

B;(h, 1) = 1 + # + 0(h4),

B;(h,l) = 1 + ~ +O(h4).

(A29)

(A30)
“.
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